Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1280191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869718

RESUMO

Ketones are alternative energy substrates for the heart and kidney but no studies have investigated their metabolism simultaneously in both organs in humans. The present double tracer positron emission tomography (PET) study evaluated the organ distribution and basal kinetic rates of the radiolabeled ketone, 11C-acetoacetate (11C-AcAc), in the heart and kidney compared to 11C-acetate (11C-Ac), which is a well-validated metabolic radiotracer. Both tracers were highly metabolized by the left ventricle and the renal cortex. In the heart, kinetic rates were similar for both tracers. But in the renal cortex, uptake of 11C-Ac was higher compared to 11C-AcAc, while the reverse was observed for the clearance. Interestingly, infusion of 11C-AcAc led to a significantly delayed release of radioactivity in the renal medulla and pelvis, a phenomenon not observed with 11C-Ac. This suggests an equilibrium of 11C-AcAc with the other ketone, 11C-D-beta-hydroxybutyrate, and a different clearance profile. Overall, this suggests that in the kidney, the absorption and metabolism of 11C-AcAc is different compared to 11C-Ac. This dual tracer PET protocol provides the opportunity to explore the relative importance of ketone metabolism in cardiac and renal diseases, and to improve our mechanistic understanding of new metabolic interventions targeting these two organs.

2.
Plant Sci ; 331: 111694, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004941

RESUMO

Large amounts of root exudates are released by plant roots into the soil. Due to their importance in regulating the rhizosphere properties, it is necessary to unravel the precise composition and function of exudates at the root-soil interface. However, obtaining root exudates without inducing artefacts is a difficult task. To analyse the low molecular weight molecules secreted by pea roots, a protocol of root exudate collection was developed to perform a metabolomics analysis using Nuclear Magnetic Resonance (NMR). To date a few NMR studies are dedicated to root exudates. Plant culture, exudates collection and sample preparation methods had thus to be adapted to the NMR approach. Here, pea seedlings were hydroponically grown. The obtained NMR fingerprints show that osmotic stress increases the quantity of the exudates but not their diversity. We therefore selected a protocol reducing the harvest time and using an ionic solvent and applied it to the analysis of faba bean exudates. NMR analysis of the metabolic profiles allowed to discriminate between pea and faba bean according to their exudate composition. This protocol is therefore very promising for studying the composition of root exudates from different plant species as well as their evolution in response to different environmental conditions or pathophysiological events.


Assuntos
Raízes de Plantas , Vicia faba , Raízes de Plantas/metabolismo , Exsudatos de Plantas/química , Solo/química , Exsudatos e Transudatos/metabolismo , Rizosfera , Plantas/metabolismo , Espectroscopia de Ressonância Magnética
3.
Front Plant Sci ; 14: 1132132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844081

RESUMO

Plants have to cope with a myriad of soilborne pathogens that affect crop production and food security. The complex interactions between the root system and microorganisms are determinant for the whole plant health. However, the knowledge regarding root defense responses is limited as compared to the aerial parts of the plant. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in these organs. The root cap releases cells termed root "associated cap-derived cells" (AC-DCs) or "border cells" embedded in a thick mucilage layer forming the root extracellular trap (RET) dedicated to root protection against soilborne pathogens. Pea (Pisum sativum) is the plant model used to characterize the composition of the RET and to unravel its function in root defense. The objective of this paper is to review modes of action of the RET from pea against diverse pathogens with a special focus on root rot disease caused by Aphanomyces euteiches, one of the most widely occurring and large-scale pea crop diseases. The RET, at the interface between the soil and the root, is enriched in antimicrobial compounds including defense-related proteins, secondary metabolites, and glycan-containing molecules. More especially arabinogalactan proteins (AGPs), a family of plant extracellular proteoglycans belonging to the hydroxyproline-rich glycoproteins were found to be particularly present in pea border cells and mucilage. Herein, we discuss the role of RET and AGPs in the interaction between roots and microorganisms and future potential developments for pea crop protection.

4.
Neurobiol Aging ; 115: 77-87, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504234

RESUMO

Ketones, the brain's alternative fuel to glucose, bypass the brain glucose deficit and improve cognition in mild cognitive impairment (MCI). Our goal was to assess the impact of a 6-month ketogenic intervention on the functional connectivity within eight major brain resting-state networks, and its possible relationship to improved cognitive outcomes in the BENEFIC trial. MCI participants were randomized to a placebo (n = 15) or ketogenic medium chain triglyceride (kMCT; n = 17) intervention. kMCT was associated with increased functional connectivity within the dorsal attention network (DAN), which correlated to improvement in cognitive tests targeting attention. Ketone uptake (11C-acetoacetate PET) specifically in DAN cortical regions was highly increased in the kMCT group and was directly associated with the improved DAN functional connectivity. Analysis of the structural connectome revealed increased fiber density within the DAN following kMCT. Our findings suggest that ketones in MCI may prove beneficial for cognition at least in part because they improve brain network energy status, functional connectivity and axonal integrity.


Assuntos
Disfunção Cognitiva , Encéfalo/diagnóstico por imagem , Glucose , Humanos , Cetonas , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
5.
Alzheimers Dement (N Y) ; 7(1): e12217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869825

RESUMO

INTRODUCTION: White matter (WM) energy supply is crucial for axonal function and myelin maintenance. An exogenous source of ketones, the brain's alternative fuel to glucose, bypasses the brain's glucose-specific energy deficit and improves cognitive outcomes in mild cognitive impairment (MCI). How an additional supply of ketones affects glucose or ketone uptake in specific WM fascicles in MCI has not previously been reported. METHODS: This 6-month interventional study included MCI participants randomized to a placebo (n = 16) or ketogenic medium chain triglyceride (kMCT; n = 17) drink. A neurocognitive battery and brain imaging were performed pre- and post-intervention. WM fascicle uptake of ketone and glucose and structural properties were assessed using positron emission tomography and diffusion imaging, respectively. RESULTS: Ketone uptake was increased in the kMCT group by 2.5- to 3.2-fold in all nine WM fascicles of interest (P < .001), an effect seen both in deep WM and in fascicle cortical endpoints. Improvement in processing speed was positively associated with WM ketone uptake globally and in individual fascicles, most importantly the fornix (r = +0.61; P = .014). DISCUSSION: A 6-month kMCT supplement improved WM energy supply in MCI by increasing ketone uptake in WM fascicles. The significant positive association with processing speed suggests that ketones may have a role in myelin integrity in MCI.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33906081

RESUMO

INTRODUCTION: Mild cognitive impairment (MCI) is often accompanied by metabolic abnormalities and inflammation that might play a role in the development of cognitive impairment. The use of ketogenic medium-chain triglycerides (kMCT) to improve cognition in this population has shown promising results but remains controversial because of the potentially detrimental effect of elevated intake of saturated fatty acids on cardiovascular (CV) health and perhaps inflammatory processes. The primary aim of this secondary data analysis report is to describe changes in cardiometabolic markers and peripheral inflammation during a 6-month kMCT intervention in MCI. METHODS: Thirty-nine participants with MCI completed the intervention of 30 g/day of either a kMCT drink or calorie-matched placebo (high-oleic acid) for 6 months. Plasma concentrations of cardiometabolic and inflammatory markers were collected before (fasting state) and after the intervention (2 h following the last drink). RESULTS: A mixed model ANOVA analysis revealed a time by group interaction for ketones (P < 0.001), plasma 8:0 and 10:0 acids (both P < 0.001) and IL-8 (P = 0.002) with follow up comparison revealing a significant increase in the kMCT group (+48%, P = 0.005), (+3,800 and +4,900%, both P < 0.001) and (+147%, P < 0.001) respectively. A main effect of time was observed for insulin (P = 0.004), triglycerides (P = 0.011) and non-esterified fatty acids (P = 0.036). CONCLUSION: Under these study conditions, 30 g/d of kMCT taken for six months and up to 2-hour before post-intervention testing had minimal effect on an extensive profile of circulating cardiometabolic and inflammatory markers as compared to a placebo calorie-matched drink. Our results support the safety kMCT supplementation in individuals with MCI. The clinical significance of the observed increase in circulating IL-8 levels is presently unknown and awaits future studies.


Assuntos
Disfunção Cognitiva/dietoterapia , Ácidos Graxos/sangue , Insulina/sangue , Interleucina-8/sangue , Triglicerídeos/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Disfunção Cognitiva/sangue , Dieta Cetogênica , Esquema de Medicação , Jejum/sangue , Feminino , Humanos , Masculino , Resultado do Tratamento , Triglicerídeos/farmacocinética
7.
Alzheimers Dement ; 17(3): 543-552, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33103819

RESUMO

INTRODUCTION: Counteracting impaired brain glucose metabolism with ketones may improve cognition in mild cognitive impairment (MCI). METHODS: Cognition, plasma ketone response, and metabolic profile were assessed before and 6 months after supplementation with a ketogenic drink containing medium chain triglyceride (ketogenic medium chain triglyceride [kMCT]; 15 g twice/day; n = 39) or placebo (n = 44). RESULTS: Free and cued recall (Trial 1; P = .047), verbal fluency (categories; P = .024), Boston Naming Test (total correct answers; P = .033), and the Trail-Making Test (total errors; P = .017) improved significantly in the kMCT group compared to placebo (analysis of covariance; pre-intervention score, sex, age, education, and apolipoprotein E4 as covariates). Some cognitive outcomes also correlated positively with plasma ketones. Plasma metabolic profile and ketone response were unchanged. CONCLUSIONS: This kMCT drink improved cognitive outcomes in MCI, at least in part by increasing blood ketone level. These data support further assessment of MCI progression to Alzheimer's disease.


Assuntos
Bebidas , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Dieta Cetogênica , Triglicerídeos/metabolismo , Idoso , Feminino , Humanos , Cetonas/sangue , Cetonas/metabolismo , Masculino , Testes Neuropsicológicos/estatística & dados numéricos
8.
J Alzheimers Dis ; 76(3): 863-881, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32568202

RESUMO

BACKGROUND: White matter energy supply to oligodendrocytes and the axonal compartment is crucial for normal axonal function. Although gray matter glucose hypometabolism is extensively reported in Alzheimer's disease (AD), glucose and ketones, the brain's two main fuels, are rarely quantified in white matter in AD. OBJECTIVE: Using a dual-tracer PET method combined with a fascicle-specific diffusion MRI approach, robust to white matter hyper intensities and crossing fibers, we aimed to quantify both glucose and ketone metabolism in specific white matter fascicles associated with mild cognitive impairment (MCI; n = 51) and AD (n = 13) compared to cognitively healthy age-matched controls (Controls; n = 14). METHODS: Eight white matter fascicles of the limbic lobe and corpus callosum were extracted and analyzed into fascicle profiles of five sections. Glucose (18F-fluorodeoxyglucose) and ketone (11C-acetoacetate) uptake rates, corrected for partial volume effect, were calculated along each fascicle. RESULTS: The only fascicle with significantly lower glucose uptake in AD compared to Controls was the left posterior cingulate segment of the cingulum (-22%; p = 0.016). Non-significantly lower glucose uptake in this fascicle was also observed in MCI. In contrast to glucose, ketone uptake was either unchanged or higher in sections of the fornix and parahippocampal segment of the cingulum in AD. CONCLUSION: To our knowledge, this is the first report of brain fuel uptake calculated along white matter fascicles in humans. Energetic deterioration in white matter in AD appears to be specific to glucose and occurs first in the posterior cingulum.


Assuntos
Doença de Alzheimer/patologia , Glucose/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Fluordesoxiglucose F18/metabolismo , Substância Cinzenta/metabolismo , Giro do Cíngulo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
9.
Front Nutr ; 7: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32083091

RESUMO

Ketones provide an alternative brain fuel and may be neuroprotective in older people. Little is known of how to optimize the ketogenic effect of C8:0-C10:0 medium chain triglyceride supplement (kMCT). Metabolic switching (MS) from glucose to ketones as a fuel may have metabolic benefits but has not been extensively studied in humans. The objective of the present study was to use an 8 h metabolic study day protocol to assess the influence of typical components of MS, including a kMCT supplement, low-carbohydrate meal and meal timing, on blood ketones, glucose, insulin and free fatty acids (FFA). In one test, the effect of age was also investigated. Over the 8 h metabolic study day, two 10 g doses of the kMCT increased the plasma ketone response by 19% while reducing overall glycemia by 12% without altering insulin or FFA levels. Moreover, a single early meal (breakfast but no lunch) potentiated the ketogenic effect of MS over 8 h, compared to a single delayed meal (lunch but no breakfast). Age and the low carbohydrate meal did not affect the ketones response. We conclude that an 8-h test period can be used to assess metabolic changes during short-term MS. kMCT provide a robust short-term increase in ketones and might enhance the metabolic effectiveness of short-term or intermittent fasting as a component of MS.

10.
Front Nutr ; 6: 46, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058159

RESUMO

Background: Medium chain triglycerides (MCT) are ketogenic but the relationship between the change in plasma ketones and the change plasma medium chain fatty acids (MCFA)-octanoate, decanoate, or dodecanoate-after an oral dose of MCT is not well-known. An 8 h metabolic study day is a suitable model to assess the acute effects on plasma ketones and MCFA after a dose of tricaprylin (C8), tricaprin (C10), trilaurin (C12) or mixed MCT (C8C10). Objective: To assess in healthy humans the relationship between the change in plasma ketones, and octanoate, decanoate and dodecanoate in plasma total lipids during an 8 h metabolic study day in which a first 20 ml dose of the homogenized test oil is taken with breakfast and a second 20 ml dose is taken 4 h later without an accompanying meal. Results: The change in plasma acetoacetate, ß-hydroxybutyrate and total ketones was highest after C8 (0.5 to 3 h post-dose) and was lower during tests in which octanoate was absent or was diluted by C10 in the test oil. The plasma ketone response was also about 2 fold higher without an accompanying meal (P = 0.012). However, except during the pure C10 test, the response of octanoate, decanoate or dodecanoate in plasma total lipids to the test oils was not affected by consuming an accompanying meal. Except with C12, the 4 h area-under-the-curve of plasma ß-hydroxybutyrate/acetoacetate was 2-3 fold higher when no meal was consumed (P < 0.04). Conclusion: C8 was about three times more ketogenic than C10 and about six times more ketogenic than C12 under these acute metabolic test conditions, an effect related to the post-dose increase in octanoate in plasma total lipids.

11.
Alzheimers Dement ; 15(5): 625-634, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31027873

RESUMO

INTRODUCTION: Unlike for glucose, uptake of the brain's main alternative fuel, ketones, remains normal in mild cognitive impairment (MCI). Ketogenic medium chain triglycerides (kMCTs) could improve cognition in MCI by providing the brain with more fuel. METHODS: Fifty-two subjects with MCI were blindly randomized to 30 g/day of kMCT or matching placebo. Brain ketone and glucose metabolism (quantified by positron emission tomography; primary outcome) and cognitive performance (secondary outcome) were assessed at baseline and 6 months later. RESULTS: Brain ketone metabolism increased by 230% for subjects on the kMCT (P < .001) whereas brain glucose uptake remained unchanged. Measures of episodic memory, language, executive function, and processing speed improved on the kMCT versus baseline. Increased brain ketone uptake was positively related to several cognitive measures. Seventy-five percent of participants completed the intervention. DISCUSSION: A dose of 30 g/day of kMCT taken for 6 months bypasses a significant part of the brain glucose deficit and improves several cognitive outcomes in MCI.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva , Metabolismo Energético/fisiologia , Glucose/metabolismo , Cetonas , Idoso , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Cetonas/administração & dosagem , Cetonas/metabolismo , Masculino , Testes Neuropsicológicos/estatística & dados numéricos , Tomografia por Emissão de Pósitrons
12.
Front Aging Neurosci ; 11: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828297

RESUMO

We aimed to longitudinally assess the relationship between changing brain energy metabolism (glucose and acetoacetate) and cognition during healthy aging. Participants aged 71 ± 5 year underwent cognitive evaluation and quantitative positron emission tomography (PET) and magnetic resonance imaging (MRI) scans at baseline (N = 25) and two (N = 25) and four (N = 16) years later. During the follow-up, the rate constant for brain extraction of glucose (Kglc) declined by 6%-12% mainly in the temporo-parietal lobes and cingulate gyri (p ≤ 0.05), whereas brain acetoacetate extraction (Kacac) and utilization remained unchanged in all brain regions (p ≥ 0.06). Over the 4 years, cognitive results remained within the normal age range but an age-related decline was observed in processing speed. Kglc in the caudate was directly related to performance on several cognitive tests (r = +0.41 to +0.43, all p ≤ 0.04). Peripheral insulin resistance assessed by the homeostasis model assessment of insulin resistance (HOMA-IR) was significantly inversely related to Kglc in the thalamus (r = -0.44, p = 0.04) and in the caudate (r = -0.43, p = 0.05), and also inversely related to executive function, attention and processing speed (r = -0.45 to -0.53, all p ≤ 0.03). We confirm in a longitudinal setting that the age-related decline in Kglc is directly associated with declining performance on some tests of cognition but does not significantly affect Kacac.

13.
Appl Physiol Nutr Metab ; 44(1): 66-73, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29986150

RESUMO

The objectives of this study were to determine (i) whether a 5-day aerobic exercise (AE) program combined with a medium-chain triglyceride (MCT) supplement would increase the plasma ketone response in older women more than either intervention alone and (ii) whether ketonemia after these combined or separate treatments was alike in normoglycemic (NG) and prediabetic (PD) women. Older women (NG, n = 10; PD, n = 9) underwent a 4-h metabolic study after each of 4 different treatments: (i) no treatment (control), (ii) 5 days of MCT alone (30 g·day-1), (iii) 1 session of 30 min of AE alone, and (iv) 5 days of MCT and AE combined (MCT+AE). Blood was sampled every 30 min over 4 h for analysis. In NG, MCT+AE induced the highest area under the curve (AUC) for plasma ketones (835 ± 341 µmol·h·L-1); this value was 69% higher than that observed with MCT alone (P < 0.05). AUCs were not different between MCT alone and MCT+AE in PD, but both treatments induced a significantly higher AUC than the control or AE alone (P < 0.05). Although there was a trend towards a higher ketone AUC in NG versus PD with AE alone (P = 0.091), there was no significant difference between the ketone AUCs in PD and NG. In conclusion, MCT+AE was more ketogenic in older women than MCT or AE alone. MCT+AE had a synergistic effect on ketonemia in NG but not in PD. Whether improving insulin sensitivity with a longer term AE intervention can improve the ketogenic effect of MCT in PD and thereby increase brain ketone uptake in older people merits further investigation.


Assuntos
Glicemia/metabolismo , Dieta Cetogênica , Terapia por Exercício/métodos , Estado Pré-Diabético/terapia , Triglicerídeos/administração & dosagem , Fatores Etários , Idoso , Biomarcadores/sangue , Dieta Cetogênica/efeitos adversos , Terapia por Exercício/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade , Estado Pré-Diabético/sangue , Estado Pré-Diabético/diagnóstico , Quebeque , Fatores Sexuais , Fatores de Tempo , Resultado do Tratamento , Triglicerídeos/metabolismo
14.
J Alzheimers Dis ; 64(2): 551-561, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29914035

RESUMO

BACKGROUND: In Alzheimer's disease (AD), it is unknown whether the brain can utilize additional ketones as fuel when they are derived from a medium chain triglyceride (MCT) supplement. OBJECTIVE: To assess whether brain ketone uptake in AD increases in response to MCT as it would in young healthy adults. METHODS: Mild-moderate AD patients sequentially consumed 30 g/d of two different MCT supplements, both for one month: a mixture of caprylic (55%) and capric acids (35%) (n = 11), followed by a wash-out and then tricaprylin (95%; n = 6). Brain ketone (11C-acetoacetate) and glucose (FDG) uptake were quantified by PET before and after each MCT intervention. RESULTS: Brain ketone consumption doubled on both types of MCT supplement. The slope of the relationship between plasma ketones and brain ketone uptake was the same as in healthy young adults. Both types of MCT increased total brain energy metabolism by increasing ketone supply without affecting brain glucose utilization. CONCLUSION: Ketones from MCT compensate for the brain glucose deficit in AD in direct proportion to the level of plasma ketones achieved.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Cetonas/sangue , Triglicerídeos/uso terapêutico , Acetatos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Carbono/metabolismo , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons
15.
J Alzheimers Dis ; 56(4): 1459-1468, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28157102

RESUMO

BACKGROUND: Aerobic training has some benefits for delaying the onset or progression of Alzheimer's disease (AD). Little is known about the implication of the brain's two main fuels, glucose and ketones (acetoacetate), associated with thesebenefits. OBJECTIVE: To determine whether aerobic exercise training modifies brain energy metabolism in mild AD. METHODS: In this uncontrolled study, ten patients with mild AD participated in a 3-month, individualized, moderate-intensity aerobic training on a treadmill (Walking). Quantitative measurement of brain uptake of glucose (CMRglu) and acetoacetate (CMRacac) using neuroimaging and cognitive testing were done before and after the Walking program. RESULTS: Four men and six women with an average global cognitive score (MMSE) of 26/30 and an average age of 73 y completed the Walking program. Average total distance and treadmill speed were 8 km/week and 4 km/h, respectively. Compared to the Baseline, after Walking, CMRacac was three-fold higher (0.6±0.4 versus 0.2±0.1 µmol/100 g/min; p = 0.01). Plasma acetoacetate concentration and the blood-to-brain acetoacetate influx rate constant were also increased by 2-3-fold (all p≤0.03). CMRglu was unchanged after Walking (28.0±0.1 µmol/100 g/min; p = 0.96). There was a tendency toward improvement in the Stroop-color naming test (-10% completion time, p = 0.06). Performance on the Trail Making A&B tests was also directly related to plasma acetoacetate and CMRacac (all p≤0.01). CONCLUSION: In mild AD, aerobic training improved brain energy metabolism by increasing ketone uptake and utilization while maintaining brain glucose uptake, and could potentially be associated with some cognitive improvement.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Terapia por Exercício , Caminhada , Acetoacetatos/metabolismo , Idoso , Doença de Alzheimer/psicologia , Cognição/fisiologia , Feminino , Glucose/metabolismo , Humanos , Cetonas/metabolismo , Imageamento por Ressonância Magnética , Masculino , Testes de Estado Mental e Demência , Neuroimagem , Testes Neuropsicológicos , Projetos Piloto , Tomografia por Emissão de Pósitrons , Resultado do Tratamento , Caminhada/fisiologia , Caminhada/psicologia
16.
Curr Dev Nutr ; 1(4): e000257, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29955698

RESUMO

Background: Ketones are the brain's main alternative fuel to glucose. Dietary medium-chain triglyceride (MCT) supplements increase plasma ketones, but their ketogenic efficacy relative to coconut oil (CO) is not clear. Objective: The aim was to compare the acute ketogenic effects of the following test oils in healthy adults: coconut oil [CO; 3% tricaprylin (C8), 5% tricaprin (C10)], classical MCT oil (C8-C10; 55% C8, 35% C10), C8 (>95% C8), C10 (>95% C10), or CO mixed 50:50 with C8-C10 or C8. Methods: In a crossover design, 9 participants with mean ± SD ages 34 ± 12 y received two 20-mL doses of the test oils prepared as an emulsion in 250 mL lactose-free skim milk. During the control (CTL) test, participants received only the milk vehicle. The first test dose was taken with breakfast and the second was taken at noon but without lunch. Blood was sampled every 30 min over 8 h for plasma acetoacetate and ß-hydroxybutyrate (ß-HB) analysis. Results: C8 was the most ketogenic test oil with a day-long mean ± SEM of +295 ± 155 µmol/L above the CTL. C8 alone induced the highest plasma ketones expressed as the areas under the curve (AUCs) for 0-4 and 4-8 h (780 ± 426 µmol ⋅ h/L and 1876 ± 772 µmol ⋅ h/L, respectively); these values were 813% and 870% higher than CTL values (P < 0.01). CO plasma ketones peaked at +200 µmol/L, or 25% of the C8 ketone peak. The acetoacetate-to-ß-HB ratio increased 56% more after CO than after C8 after both doses. Conclusions: In healthy adults, C8 alone had the highest net ketogenic effect over 8 h, but induced only half the increase in the acetoacetate-to-ß-HB ratio compared with CO. Optimizing the type of MCT may help in developing ketogenic supplements designed to counteract deteriorating brain glucose uptake associated with aging. This trial was registered at clinicaltrials.gov as NCT 02679222.

17.
Curr Dev Nutr ; 1(7): e000851, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29955713

RESUMO

Background: Lower-brain glucose uptake is commonly present before the onset of cognitive deterioration associated with aging and may increase the risk of Alzheimer disease. Ketones are the brain's main alternative energy substrate to glucose. Medium-chain triglycerides (MCTs) are rapidly ß-oxidized and are ketogenic but also have gastrointestinal side effects. We assessed whether MCT emulsification into a lactose-free skim-milk matrix [emulsified MCTs (MCT-Es)] would improve ketogenesis, reduce side effects, or both compared with the same oral dose of MCTs consumed without emulsification [nonemulsified MCTs (MCT-NEs)]. Objectives: Our aims were to show that, in healthy adults, MCT-Es will induce higher ketonemia and have fewer side effects than MCT-NEs and the effects of MCT-NEs and MCT-Es on ketogenesis and plasma medium-chain fatty acids (MCFAs) will be dose-dependent. Methods: Using a metabolic study day protocol, 10 healthy adults were each given 3 separate doses (10, 20, or 30 g) of MCT-NEs or MCT-Es with a standard breakfast or no treatment [control (CTL)]. Blood samples were taken every 30 min for 4 h to measure plasma ketones (ß-hydroxybutyrate and acetoacetate), octanoate, decanoate, and other metabolites. Participants completed a side-effects questionnaire at the end of each study day. Results: Compared with CTL, MCT-NEs increased ketogenesis by 2-fold with no significant differences between doses. MCT-Es increased total plasma ketones by 2- to 4-fold in a dose-dependent manner. Compared with MCT-NEs, MCT-Es increased plasma MCFA bioavailability (F) by 2- to 3-fold and decreased the number of side effects by ∼50%. Conclusions: Emulsification increased the ketogenic effect and decreased side effects in a dose-dependent manner for single doses of MCTs ≤30 g under matching conditions. Further investigation is needed to establish whether emulsification could sustain ketogenesis and minimize side effects and therefore be used as a treatment to change brain ketone availability over a prolonged period of time. This trial was registered at clinicaltrials.gov as NCT02409927.

18.
Front Mol Neurosci ; 9: 53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458340

RESUMO

We propose that brain energy deficit is an important pre-symptomatic feature of Alzheimer's disease (AD) that requires closer attention in the development of AD therapeutics. Our rationale is fourfold: (i) Glucose uptake is lower in the frontal cortex of people >65 years-old despite cognitive scores that are normal for age. (ii) The regional deficit in brain glucose uptake is present in adults <40 years-old who have genetic or lifestyle risk factors for AD but in whom cognitive decline has not yet started. Examples include young adult carriers of presenilin-1 or apolipoprotein E4, and young adults with mild insulin resistance or with a maternal family history of AD. (iii) Regional brain glucose uptake is impaired in AD and mild cognitive impairment (MCI), but brain uptake of ketones (beta-hydroxybutyrate and acetoacetate), remains the same in AD and MCI as in cognitively healthy age-matched controls. These observations point to a brain fuel deficit which appears to be specific to glucose, precedes cognitive decline associated with AD, and becomes more severe as MCI progresses toward AD. Since glucose is the brain's main fuel, we suggest that gradual brain glucose exhaustion is contributing significantly to the onset or progression of AD. (iv) Interventions that raise ketone availability to the brain improve cognitive outcomes in both MCI and AD as well as in acute experimental hypoglycemia. Ketones are the brain's main alternative fuel to glucose and brain ketone uptake is still normal in MCI and in early AD, which would help explain why ketogenic interventions improve some cognitive outcomes in MCI and AD. We suggest that the brain energy deficit needs to be overcome in order to successfully develop more effective therapeutics for AD. At present, oral ketogenic supplements are the most promising means of achieving this goal.

19.
Nutrition ; 32(11-12): 1211-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27261061

RESUMO

OBJECTIVES: The aim of the present study was to compare the effects of an α-linolenic acid-rich supplement (ALA-RS) on the ketogenic response and plasma long-chain ω-3 polyunsaturated fatty acid in healthy young adults and older individuals. METHODS: Ten young (25 ± 0.9 y) and 10 older adults (73.1 ± 2.2 y) consumed a flaxseed oil supplement providing 2 g/d of ALA for 4 wk. Plasma ketones, nonesterified fatty acids (NEFA), triacylglycerols, glucose, and insulin were measured over 6 h, before and after supplementation. Total body fat mass was assessed before and after the ALA-RS. RESULTS: The ALA-RS did not significantly modify fasting ketones but postprandial production of ß-hydroxybutyrate was increased by 26% (P = 0.037) only in the young adult group. Fasting plasma ketones were positively correlated to fasting plasma NEFA (P < 0.01) in both groups. However, the relation was shifted to the right in the older group, suggesting that older adults needed higher plasma NEFA levels to achieve the same ketone amounts as young adults. At baseline, the older group had 47% higher total plasma fatty acids than the young group (P = 0.007). After the ALA-RS, plasma ALA doubled in both groups (P < 0.01), an effect that was associated in the older group with a 40% higher eicosapentaenoic acid (EPA; P = 0.004), but no difference in docosahexaenoic acid. The postsupplementation increase in plasma ALA correlated positively with percent total body fat, especially in the older group (r(2) = 0.77; P = 0.0016). CONCLUSION: In young adults, ALA-RS mildly stimulated postprandial ketogenesis, whereas in the older group, it favored increased plasma ALA and EPA.


Assuntos
Envelhecimento/metabolismo , Suplementos Nutricionais , Ácidos Graxos Ômega-3/sangue , Cetonas/metabolismo , Ácido alfa-Linolênico/administração & dosagem , Tecido Adiposo/anatomia & histologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Envelhecimento/patologia , Glicemia/metabolismo , Jejum/sangue , Jejum/metabolismo , Feminino , Humanos , Insulina/sangue , Cetonas/sangue , Óleo de Semente do Linho/administração & dosagem , Lipídeos/sangue , Masculino , Período Pós-Prandial , Adulto Jovem , Ácido alfa-Linolênico/sangue
20.
Ann N Y Acad Sci ; 1367(1): 12-20, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26766547

RESUMO

Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), ß-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Encéfalo/metabolismo , Glucose/metabolismo , Cetonas/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/etiologia , Animais , Encéfalo/patologia , Dieta Cetogênica/métodos , Dieta Cetogênica/tendências , Metabolismo Energético/fisiologia , Humanos , Fatores de Risco , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...